2022年

作者:时间:2024-11-19点击数:

2022年


[1] Niu, C.; Yin,W.; Xue, W.; Sui, Y.; Xun, X.; Zhou, X.; Zhang, S.; Xue, Y. Multi-Window Identification of Landslide Hazards Based on InSAR Technology and Factors Predisposing to Disasters. Land 2023, 12, 173. https://doi.org/10.3390/land12010173

[2] Niu, C.; Ma, K.; Shen, X.; Wang, X.; Xie, X.; Tan, L.; Xue, Y., Attention-Enhanced Region Proposal Networks for Multi-Scale Landslide and Mudslide Detection from Optical Remote Sensing Images. Land 2023, 12, 313. https://doi.org/10.3390/land12020313

[3] Sheng Zhang, Yong Xue, Xiran Zhou, Xiaopeng Zhang, Wenhao Liu, Kaiyuan Li, Runze Liu, 2022, The State of the Art of High-Performance and High-Throughput Computing for Remote Sensing Big Data. IEEE Geoscience and Remote Sensing Magazine, 10.1109/MGRS.2022.3204590

[4] Ding Li, Jason Blake Cohen, Kai Qin, Yong Xue, Lanlan Rao, 2022, Absorbing aerosol optical depth from OMI/TROPOMI based on the GBRT algorithm and AERONET data in Asia. IEEE Transactions on Geoscience and Remote Sensing, DOI: 10.1109/TGRS.2022.3231699

[5] Chunlin Jin, Yong Xue, Xingxing Jiang, Shuhui Wu, Yuxin Sun, 2022, Retrieval and Validation of Long-Term Aerosol Optical Depth from AVHRR Data over China. International Journal of Digital Earth. DOI: 10.1080/17538947.2022.2138590.

[6] Jiang, X.; Xue, Y.; Jin, C.; Bai,R.; Sun, Y.;Wu, S. A Simple BandRatio Library (BRL) Algorithm for Retrieval of Hourly Aerosol Optical Depth Using FY-4A AGRI Geostationary Satellite Data. Remote Sens. 2022, 14, 4861. https://doi.org/10.3390/rs14194861

[7] Li, D.; Xue, Y.; Qin, K.; Wang, H.; Kang, H.; Wang, L. Investigating the Long-Term Variation Trends of Absorbing Aerosols over Asia by Using Multiple Satellites. Remote Sens. 2022, 14, 5832. https://doi.org/10.3390/rs14225832

[8] Silin Chen, Jiaqi Zhao, Yong Zhou, Hanzheng Wang, Rui Yao, Lixu Zhang, Yong Xue, 2022, Info-FPN: An Informative Feature Pyramid Network for Object Detection in Remote Sensing Images. Expert Systems with Applications, Volume 214, 15 March 2023, 119132,https://doi.org/10.1016/j.eswa.2022.119132

[9] Jiang, L.; Cui, T.; Liu, H.; Xue, Y. Remote Sensing Monitoring and Analytical Evaluation of Grasslands in the Muli Region of Qinhai, China during 2000 to 2021. Land 2022, 11, 1733. https://doi.org/10.3390/land11101733

[10] Wang X, Xue Y, Jin C, Sun Y and Li N (2022), Spatial downscaling of surface ozone concentration calculation from remotely sensed data based on mutual information. Front. Environ. Sci. 10:925979. doi: 10.3389/fenvs.2022.925979

[11] Ding Li, Kai Qin, Lixin Wu, Linlu Mei, Gerrit de Leeuw, Yong Xue, Yining Shi and Yifei Li, Himawari-8-Derived Aerosol Optical Depth Using an Improved Time Series Algorithm Over Eastern China. Remote Sens. 2020, 12, 978; doi:10.3390/rs12060978

[12] Yong Zhou, Silin Chen, Jiaqi Zhao, Rui Yao, Yong Xue, and Abdulmotaleb El Saddik, CLT-Det: Correlation Learning Based on Transformer for Dense Objects Detection in Remote Sensing Images, IEEE TGRS, 10.1109/TGRS.2022.3204770 (06 September 2022)

[13] Chunlin Jin, Yong Xue, Xingxing Jiang, Liang Zhao, Tao Yuan, Yuxin Sun, Shuhui Wu, and Xiangkai Wang, A long-term global XCO2 dataset: Ensemble of satellite products 2022, 106385. https://doi.org/10.1016/j.atmosres.2022.106385

[14] Bai, R.; Xue, Y.; Jiang, X.; Jin, C.; Sun, Y., Retrieval of High-Resolution Aerosol Optical Depth for Urban Air Pollution Monitoring. Atmosphere 2022, 13, 756. https://doi.org/10.3390/atmos13050756

[15] C.A. Varotsos, F.A. Mkrtchyan, V.Yu. Soldatov, Y. Xue, Capabilities on Remote Microwave Technologies to Assess the State of Water Systems. Water, Air, & Soil Pollution. (2022) 233:114. (https://doi.org/10.1007/s11270-022-05560-6)

[16] Jiaqi Zhao, Di Zhang, Boyu Shi, Yong Zhou, Jingyang Chen, Rui Yao and Yong Xue, 2022, Multi-source Collaborative Enhanced for Remote Sensing Images Semantic Segmentation. Neurocomputing, https://doi.org/10.1016/j.neucom.2022.04.045

[17] Xin He, Yong Zhou, Jiaqi Zhao, Di Zhang, Rui Yao, and Yong Xue, 2022, Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation. IEEE Transactions on Geoscience and Remote Sensing. Vol. 60, January 2022, pp.1-15. (DOI: 10.1109/TGRS.2022.3144165)

[18] Liang Zou, Zhifan Zhang, Haijia Du, Meng Lei, Yong Xue, Z. Jane Wang, 2022, DA-IMRN: Dual-Attention-Guided Interactive Multi-Scale Residual Network for Hyperspectral Image Classification. Remote Sens. doi: 10.3390/rs14030530.

[19] Costas A. Varotsos, Vladimir F. Krapivinc, Ferdenant A. Mkrtchyanc and Yong Xue, 2022, Mission to Mars: effective tools for searching and diagnosing water resources. Remote Sensing Letters, (doi: 10.1080/2150704X.2022.2033346)

[20] Liang Zhao, Shengbo Chen, Yong Xue and Tengfei Cui, 2022, Study of Atmospheric Carbon Dioxide Retrieval Method Based on Normalized Sensitivity. Remote Sensing, 2022, 14(5), 1106; https://doi.org/10.3390/rs14051106. (Corresponding author)



Copyright   ©2019-2022  Institute of Environmental Remote Sensing Big Data (IERSD)- 中国矿业大学能源与环境遥感大数据中心